FutureTask 源码分析

JDK源码学习
深入分析下 java.util.concurrent 包下 FutureTask 类

简单画了个UML图,可以看到FutureTask, CompletableFuture 都有实现 Future接口类

FutureTask类
先来看Future的实现类 –> FutureTask间接实现Runnable,Future, 可作为一个任务被执行,也能获取计算结果

有些场景需要异步执行任务, 或子线程并行执行任务,此时就可用FutureTask来实现,可以阻塞获取返回值,也可轮询获取返回值

下面通过例子来分析源码:

public class FutureTest {
public static class Task implements Callable {
@Override
public String call() {
String tid = String.valueOf(Thread.currentThread().getId());
System.out.printf(“Thread#%s : in call\n”, tid);
return tid;
}
}

public static void main(String[] args) throws InterruptedException, ExecutionException         

{
//新建一个任务放入线程池,获取其执行完的返回值
ExecutorService es = Executors.newFixedThreadPool(3);
Future future = es.submit(new Task());
System.out.println(future.get());
}
}

向线程池提交一个有返回值任务, 返回FutureTask实例

抽象类AbstractExecutorService:
public Future submit(Callable task) {
if (task == null) throw new NullPointerException();
RunnableFuture ftask = newTaskFor(task);
execute(ftask);
return ftask;
}

protected RunnableFuture newTaskFor(Callable callable) {
return new FutureTask(callable);
}

FutureTask类:
private Callable callable;
private volatile int state;
public FutureTask(Callable callable) {
if (callable == null)
throw new NullPointerException();
this.callable = callable;
this.state = NEW; // ensure visibility of callable
}

分析execute(ftask),此方法将任务放入线程池,在未来某个时间点执行任务

类ThreadPoolExecutor:

//运行状态存储在高三位中
private static final int RUNNING = -1 << COUNT_BITS;
//ctl原子整数,存储着有效线程数和线程池状态,ctlOf方法通过或运算符计算, 初始化时工作线程数为0
private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0));
public void execute(Runnable command) {
if (command == null)
throw new NullPointerException();
}
int c = ctl.get();
//计算工作线程数是否小于核心线程数
if (workerCountOf(c) < corePoolSize) {
//创建核心线程执行任务
if (addWorker(command, true))
return;
c = ctl.get();
}
//判断线程池是否是运行状态,并向工作队列添加一个任务
if (isRunning(c) && workQueue.offer(command)) {
int recheck = ctl.get();
//线程池不处于运行状态,移除任务
if (! isRunning(recheck) && remove(command))
reject(command);
else if (workerCountOf(recheck) == 0)
//创建新线程
addWorker(null, false);
}
else if (!addWorker(command, false))
//拒绝策略
reject(command);
}

继续分析addWorker方法,此方法创建工作线程执行任务

类ThreadPoolExecutor:
private boolean addWorker(Runnable firstTask, boolean core) {
//标记循环的位置
retry:
for (;;) {
//返回池控制状态
int c = ctl.get();
//获取线程池状态
int rs = runStateOf(c);

        // Check if queue empty only if necessary.
        if (rs >= SHUTDOWN &&
            ! (rs == SHUTDOWN &&
               firstTask == null &&
               ! workQueue.isEmpty()))
            return false;

        for (;;) {
            //计算工作线程数
            int wc = workerCountOf(c);
            if (wc >= CAPACITY ||
                wc >= (core ? corePoolSize : maximumPoolSize))
                return false;
            //cas操作递增工作线程数,当前数+1
            if (compareAndIncrementWorkerCount(c))
                //跳出循环标记位
                break retry;
            c = ctl.get();  // Re-read ctl
            if (runStateOf(c) != rs)
                continue retry;
            // else CAS failed due to workerCount change; retry inner loop
        }
    }

    boolean workerStarted = false;
    boolean workerAdded = false;
    Worker w = null;
    try {
        //创建worker实例
        w = new Worker(firstTask);
        final Thread t = w.thread;
        if (t != null) {
            final ReentrantLock mainLock = this.mainLock;
            mainLock.lock();
            try {
                // Recheck while holding lock.
                // Back out on ThreadFactory failure or if
                // shut down before lock acquired.
                int rs = runStateOf(ctl.get());

                if (rs < SHUTDOWN ||
                    (rs == SHUTDOWN && firstTask == null)) {
                    if (t.isAlive()) // precheck that t is startable
                        throw new IllegalThreadStateException();
                    //放入工作线程池集合
                    workers.add(w);
                    int s = workers.size();
                    if (s > largestPoolSize)
                        largestPoolSize = s;
                    workerAdded = true;
                }
            } finally {
                mainLock.unlock();
            }
            if (workerAdded) {
                t.start();
                workerStarted = true;
            }
        }
    } finally {
        //启动失败,移除worker, cas操作递减工作线程数,当前数-1
        if (! workerStarted)
            addWorkerFailed(w);
    }
    return workerStarted;
}

private void addWorkerFailed(Worker w) {
final ReentrantLock mainLock = this.mainLock;
mainLock.lock();
try {
if (w != null)
workers.remove(w);
decrementWorkerCount();
//尝试终止线程池
tryTerminate();
} finally {
mainLock.unlock();
}
}

通过上面的分析,可以看到任务放入了Worker对象中,然后启动了Worker里面的线程,那这个线程做了什么呢?
这个线程先执行创建Worker对象时提交的任务,然后取工作队列里的任务执行

类ThreadPoolExecutor:

final void runWorker(Worker w) {
    Thread wt = Thread.currentThread();
    //创建Worker对象时提交的任务
    Runnable task = w.firstTask;
    w.firstTask = null;
    w.unlock(); // allow interrupts
    boolean completedAbruptly = true;
    try {
        //getTask() 从任务池中拿一个任务
        while (task != null || (task = getTask()) != null) {
            w.lock();
            // If pool is stopping, ensur thread is interrupted;
            // if not, ensure thread is not interrupted.  This
            // requires a recheck in second case to deal with
            // shutdownNow race while clearing interrupt
            if ((runStateAtLeast(ctl.get(), STOP) ||
                 (Thread.interrupted() &&
                  runStateAtLeast(ctl.get(), STOP))) &&
                !wt.isInterrupted())
                wt.interrupt();
            try {
                //子类可重写,前置增强
                beforeExecute(wt, task);
                Throwable thrown = null;
                try {
                    //运行任务
                    task.run();
                } catch (RuntimeException x) {
                    thrown = x; throw x;
                } catch (Error x) {
                    thrown = x; throw x;
                } catch (Throwable x) {
                    thrown = x; throw new Error(x);
                } finally {
                    afterExecute(task, thrown);
                }
            } finally {
                task = null;
                w.completedTasks++;
                w.unlock();
            }
        }
        completedAbruptly = false;
    } finally {
        processWorkerExit(w, completedAbruptly);
    }
}

//从队列中取任务
private Runnable getTask() {
    boolean timedOut = false; // Did the last poll() time out?

    for (;;) {
        int c = ctl.get();
        int rs = runStateOf(c);

        // Check if queue empty only if necessary.
        if (rs >= SHUTDOWN && (rs >= STOP || workQueue.isEmpty())) {
            decrementWorkerCount();
            return null;
        }

        int wc = workerCountOf(c);

        // 判断超时标志位
        // 核心线程不允许超时,allowCoreThreadTimeOut 默认false
        // wc > corePoolSize 判断当前线程数是否大于核心线程数
        boolean timed = allowCoreThreadTimeOut || wc > corePoolSize;

        if ((wc > maximumPoolSize || (timed && timedOut))
            && (wc > 1 || workQueue.isEmpty())) {
            //当前线程数-1, 线程退出
            if (compareAndDecrementWorkerCount(c))
                return null;
            continue;
        }

        try {
            //timed = true, 等待keepAliveTime 纳秒取任务
            //timed = false, 阻塞直到有可用任务
            Runnable r = timed ?
                workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) :
                workQueue.take();
            if (r != null)
                return r;
            //已超时,作为上面的if条件,用于判断此线程是否退出
            timedOut = true;
        } catch (InterruptedException retry) {
            timedOut = false;
        }
    }
}

由于在 ThreadPoolExecutor 提交的是一个FutureTask 任务实现类,所以runWorker 里是调用 FutureTask.run() 方法来执行

类FutureTask:

public void run() {
if (state != NEW ||
!UNSAFE.compareAndSwapObject(this, runnerOffset,
null, Thread.currentThread()))
return;
try {
Callable c = callable;
if (c != null && state == NEW) {
V result;
boolean ran;
try {
//执行call函数,也就是执行测试例子中的Task.call()方法
result = c.call();
ran = true;
} catch (Throwable ex) {
result = null;
ran = false;
setException(ex);
}
if (ran)
//设置执行结果
set(result);
}
} finally {
runner = null;
int s = state;
if (s >= INTERRUPTING)
handlePossibleCancellationInterrupt(s);
}
}

protected void set(V v) {
    //cas操作变更此任务状态为 COMPLETING
    if (UNSAFE.compareAndSwapInt(this, stateOffset, NEW, COMPLETING)) {
        //任务结果赋值给outcome, 后续future.get获取的就是outcome值
        outcome = v;
        //设置最终状态为 NORMAL
        UNSAFE.putOrderedInt(this, stateOffset, NORMAL); // final state
        //移除所有等待的线程并发出信号唤醒
        finishCompletion();
    }
}

上段代码中 set() 方法设置此任务最终的状态为 NORMAL, 表示此任务已正常执行完成。
接着 finishCompletion() 方法 遍历所有等待的节点,并发送信号唤醒线程

private void finishCompletion() {
// assert state > COMPLETING;
for (WaitNode q; (q = waiters) != null;) {
if (UNSAFE.compareAndSwapObject(this, waitersOffset, q, null)) {
for (;;) {
Thread t = q.thread;
if (t != null) {
q.thread = null;
//唤醒等待的线程,此处唤醒awaitDone()方法中LockSupport.park阻塞的线程
LockSupport.unpark(t);
}
WaitNode next = q.next;
if (next == null)
break;
q.next = null; // unlink to help gc
q = next;
}
break;
}
}
done();
callable = null; // to reduce footprint
}

最终我们来看future.get() 是怎么执行的

类FutureTask:

public V get() throws InterruptedException, ExecutionException {
int s = state;
if (s <= COMPLETING)
//任务未执行完成,进行阻塞
s = awaitDone(false, 0L);
return report(s);
}

private int awaitDone(boolean timed, long nanos)
throws InterruptedException {
final long deadline = timed ? System.nanoTime() + nanos : 0L;
WaitNode q = null;
boolean queued = false;
for (;;) {
//线程中断,则从链表中移除节点,并抛出中断异常
if (Thread.interrupted()) {
removeWaiter(q);
throw new InterruptedException();
}

        int s = state;
        //任务完成、取消、异常等,则返回当前任务状态
        if (s > COMPLETING) {
            if (q != null)
                q.thread = null;
            return s;
        }
        else if (s == COMPLETING) // cannot time out yet
            //让出cpu,使当前线程从运行状态变成就绪状态,和其它线程一同竞争cpu
            Thread.yield();
        else if (q == null)
            //创建等待节点
            q = new WaitNode();
        else if (!queued)
            //cas操作更新waiters的头节点为q, 完成入队
            queued = UNSAFE.compareAndSwapObject(this, waitersOffset,
                                                 q.next = waiters, q);
        else if (timed) {
            nanos = deadline - System.nanoTime();
            if (nanos <= 0L) {
                //到了设置的超时时间,则移除等待队列
                removeWaiter(q);
                return state;
            }
            //阻塞nacos纳秒数
            LockSupport.parkNanos(this, nanos);
        }
        else
            //阻塞,等待唤醒
            LockSupport.park(this);
    }
}

private V report(int s) throws ExecutionException {
//此处x的值就是前面set方法赋值的outcome值
Object x = outcome;
if (s == NORMAL)
return (V)x;
if (s >= CANCELLED)
throw new CancellationException();
throw new ExecutionException((Throwable)x);
}

总结:
到这里Future类分析完了,基本通过这个例子可看到整个的执行流程,比如创建了FutureTask对像、创建了线程执行任务、控制状态的存储、怎么完成的回调等等。

声明:来自阿飞技术,仅代表创作者观点。链接:https://eyangzhen.com/2717.html

阿飞技术的头像阿飞技术

相关推荐

关注我们
关注我们
购买服务
购买服务
返回顶部